H(t)=-16t^2+140t+2

Simple and best practice solution for H(t)=-16t^2+140t+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+140t+2 equation:



(H)=-16H^2+140H+2
We move all terms to the left:
(H)-(-16H^2+140H+2)=0
We get rid of parentheses
16H^2-140H+H-2=0
We add all the numbers together, and all the variables
16H^2-139H-2=0
a = 16; b = -139; c = -2;
Δ = b2-4ac
Δ = -1392-4·16·(-2)
Δ = 19449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19449}=\sqrt{9*2161}=\sqrt{9}*\sqrt{2161}=3\sqrt{2161}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-139)-3\sqrt{2161}}{2*16}=\frac{139-3\sqrt{2161}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-139)+3\sqrt{2161}}{2*16}=\frac{139+3\sqrt{2161}}{32} $

See similar equations:

| H(t)=-16t^2+140t+2 | | H(t)=-16t^2+140t+2 | | H(t)=-16t^2+140t+2 | | H(t)=-16t^2+140t+2 | | 12x=−15 | | 12x=−15 | | H(t)=-16t^2+140t+2 | | H(t)=-16t^2+140t+2 | | 12x=−15 | | 12x=−15 | | 12x=−15 | | x=5-5x3+2 | | 4x-3(2x-1)=7x-(5x+3) | | x=5-5x3+2 | | 4x-3(2x-1)=7x-(5x+3) | | 4x-3(2x-1)=7x-(5x+3) | | 4x-3(2x-1)=7x-(5x+3) | | 4x-3(2x-1)=7x-(5x+3) | | 5^4x-4=1 | | 3*x=-x*300 | | 6x+7(0)=18 | | 5x^2+4x-44=0 | | 5x^2+4x-44=0 | | 5x^2+4x-44=0 | | 5x^2+4x-44=0 | | 3x+1x=1x-7 | | 3x+1x=1x-7 | | 1/2(-4x-10)=15 | | (300+x)/3=x | | (300+x)/3=1 | | -10=y/113 | | 3z=234 |

Equations solver categories